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Smectic-A and smectic- A, phases in aligned cylinders
with a cylindrical attractive square well at one end
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Nematic (N), smectic-A (Sm-A), and bilayer smectic-A2 (Sm-A2) phases are studied for an
aligned fluid of cylinders with a cylindrical attractive square well at one end. The smectic phases
are treated using an extension of the theory of Hosino, Nakano, and Kimura [J. Phys. Soc. Jpn.
46, 1709 (1979)]. The smectic-A; phase has a modulation in the probability of a molecule pointing
up (or down) in addition to the density modulation of a smectic-A phase. As for the smectic-A
density wave, this second modulation requires an order parameter. A theory including the two
order parameters is developed and the phase diagram calculated. This phase diagram shows N-
Sm-A, N-Sm-A;, and Sm-A-Sm-A; phase transitions that are second order, first order, and second
order at high temperature above a tricritical point and first order below, respectively. Somewhat
surprisingly, there is also a Sm-A-Sm-A transition; this is bracketed by a critical point at high
temperature and the Sm-A-Sm-A, transition at low temperature. There is thus a triple point
where the Sm-A-Sm-A and Sm-A-Sm-A; transitions meet. The two coexisting Sm-A phases differ
in both the density and the wavelength of the smectic density modulation. Also notable is the very
weak dependence on temperature of the N-Sm-A transition, in contrast to earlier work on cylinders
with saturable attractive forces such that only dimers form [R.P. Sear and G. Jackson, Mol. Phys.
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I. INTRODUCTION

Liquid crystals, states of matter intermediate between
the liquid and the solid, exist as a bewildering variety of
phases [1]. The structures of many of these phases have
been probed with techniques such as x-ray scattering and
the information gained has been related to the structure
of the component molecules to provide explanations for
the formation of these phases. For example, the smectic-
A (Sm-A) phase is relatively well understood [2]; here the
molecules are preferentially aligned along one direction as
in a nematic (V) liquid crystal and in addition form lay-
ers perpendicular to this direction (see Refs. [1,3] for a
discussion of the structure of liquid crystalline phases).
However, in 1979 a Sm-A-Sm-A transition was reported
[4] implying the existence of two Sm-A phases; x-ray scat-
tering showed two quasi-Bragg peaks of wave vectors k
and 2k [5] on one side of the transition, but only one of
wave vector 2k on the other. The larger wave vector 2k
corresponded to a wavelength of about the length of a
molecule, the typical wavelength for smectic-A layering.
The presence of two strong peaks at the commensurate
wave vectors k and 2k together with the presence of only
one at 2k in the other Sm-A phase is suggestive of order-
ing both at length scales k~! and (2k)~!. Later experi-
mental work observed a second-order transition between
these phases [6], in agreement with symmetry arguments
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that a transition in which the period doubles is allowed
to be second order [7]. The ordering at (2k)~! is then
the usual Sm-A layering and the ordering at k™~ is in-
terpreted as differing alternate layers, i.e., that the first,
third, etc., layers are the same, but differ from the sec-
ond, fourth, etc., layers. This has led to the phase be-
ing christened the bilayer smectic phase, or Sm-A;. The
molecules forming this phase have very different “heads”
and “tails” and so it is possible that, say, the head-head
interactions are energetically favorable. This would pro-
vide a driving force for alternating layers in which most
of the molecules point up or down (see Fig. 1).

The first work to quantify these ideas was the Lan-

~ dau theory of Prost [8]; see also [9,10]. There the ef-

fect of two coupled modulations with wave vectors k and
2k and their corresponding order parameters was consid-
ered, and the phenomenology of the experimental phase
diagram was well reproduced. A mean-field theory has
also been examined by Longa and de Jeu [11]. By con-
trast, to our knowledge there has been no work for a
particular molecular model. Without such a model, a
theory is limited to describing only the phenomena, not
the underlying molecular behavior in a particular phase.
The situation is different if a molecular model is used in
a theory that, although approximate, is based on well
understood and controlled approximations. Even a the-
ory that is only qualitative will yield information on the
features of a molecule responsible for the formation of a
particular phase. It is hoped that the theory presented
here will give insight into the molecular features respon-
sible for smectic-A polymorphism.

A microscopic theory may be particularly useful here
because of the occasional use of dimerization [5] to de-
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scribe the head-head interaction. Dimerization implies
that a head can interact with only one other head at a
time, i.e., the interaction is saturable. Clearly, a molecu-
lar model and theory are necessary to consider the impli-
cations of a microscopic phenomenon such as dimeriza-
tion. This contribution is concerned with a nonsaturable
interaction, but our earlier work has considered dimer-
ization [12], albeit with a different theoretical approach.
The results for saturable and nonsaturable interactions
will be compared in the Conclusion.

Another interesting but difficult point is whether it is
feasible that a Sm-A; phase could form due to purely
repulsive, i.e., excluded volume, interactions. Work on a
simple nail shaped model [13,14] has shown the forma-
tion of a Sm-A4 phase. The Sm-A; and Sm-A,; phases
differ only in wavelength; the Sm- A4 has a modulation of
around 1.6 times the length of a molecule as opposed to 2
times for a Sm-A, phase. This similarity is masked to a
certain extent by the presence of the two strong peaks at
k and 2k for a Sm-A; phase but only the one peak for the
Sm-Ag4 phase. Of course, in all smectic phases there are
peaks at k, 2k, 3k, ... because these correspond to the
fundamental, the first harmonic, the second harmonic,
etc. [15]. However, the harmonics are usually too weak
to be observed above the background noise. In the case of
a Sm-A; phase, but not a Sm-A, phase, the modulation
in the total density is “nearly” a wave of wave vector
2k; in fact, it has a wave vector 2k at a second-order
Sm-A-Sm-A, transition, but when the order parameter
for the modulation in the fraction of molecules pointing
up or down is finite this ordering couples with the den-
sity modulation, causing the period of this modulation
to double. The mechanism for this is seen in Fig. 1. In
the Sm-A phase the number of heads in between any two
adjacent layers is the same, but within the Sm-A, phase

______

FIG. 1. The layering present in a Sm-A, phase is shown
as alternating layers of molecules pointing up and down (see
Fig. 2 for a description of the model molecule). The dotted
lines indicate the centers of the layers. a and b indicate two
different intervals: a is the layer spacing when the heads of
the molecules are between the two adjacent layers and b is the
layer spacing when the tails of the molecules are between the
two layers.
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alternate pairs of layers have very many and very few
heads lying between them. A pair of layers with many
intervening heads will be pulled together, thus reducing
the layer spacing, while the opposite effect will occur for
a pair of layers with very few intervening heads. This, of
course, means that the period of the modulation in the
total density is now two not one of the layers. The effect
of the attractive forces shrinking alternate layer spacings
is expected to be small and if it is indeed small then the
modulation in the total (i.e., irrespective of orientation)
density will be close to that of wave vector 2k and will
therefore have an unusually strong first harmonic.

Interestingly, a direct Sm-A4z—Sm-A. transition has
been observed experimentally [16,1]. The transition
ended at a critical point at which both the densities and
the wavelengths of the two phases became equal. Above
the critical temperature the Sm-A; and Sm-A4, phases
are indistinguishable, just as a supercritical fluid does
not have separate gas and liquid phases. This is not the
only possibility; a similar Sm-A-Sm-A4 transition has
been observed to end at an island of a nematic phase
[17,18], i.e., around where the critical point should be
there is a region where the equilibrium phase is nematic.
In this context it is worthy of note that if the wavelength
of a Sm-Ay phase decreases to around the length of a
molecule, then the antiparallel ordering disappears, leav-
ing a conventional Sm-A phase. Thus the Sm-A phase
may transform directly to a Sm-A, phase by a first- or
second-order transition or it may transform into a Sm-A4
phase (with or without a phase transition) and then, by
further increasing the wavelength, into a phase we would
classify as Sm-A, (again with or without a phase tran-
sition). This is unusual in the sense that normally two
phases separated by a second-order transition can never
transform from one to the other without a phase transi-
tion. Here, because the symmetry is determined by the
wavelength of the modulation and this wavelength is a
continuous variable even if a second-order transition is
observed between a Sm-A and a Sm-A; phase, it is pos-
sible that we may be able to go from one phase to the
other without passing through a phase transition; indeed
this has been observed experimentally [19].

We have argued that the Sm-A, and Sm-A4 phases
differ only in their wavelength, in an analogous way to
the difference in density, which distinguishes the liquid
and gas phases. However, with the purely repulsive nail
shaped model of Hotyst [14], the wavelength at the tran-
sition is 1.56 times the molecular length and decreases
with increasing density, thus we would always classify the
phase as a Sm-Ay4 phase. It seems unlikely that a sim-
ple hard-core model will order with a wavelength that is
twice its length.

In the following sections we first define a very simple
model of a molecule with hard-core interactions favor-
ing smectic-A ordering (see [20,15,3]) and an attractive
interaction favoring bilayer formation. An approximate
theory for the nematic and smectic phases of this model
is then derived following [20]. The phase diagram calcu-
lated using this theory is presented and its broad features
discussed. Finally, we conclude by putting the model and
phase diagram into perspective.



II. MODEL AND THEORY

In contrast to earlier theoretical efforts to describe and
understand the bilayer smectic, we use a specific model
molecule. This model is perhaps the simplest represen-
tation of a molecule that might form a Sm-A; phase;
it is shown in Fig. 2. The hard core of our molecule
creates a volume surrounding it that is excluded to the
other molecules; this effect alone has been shown to in-
duce the nematic and smectic-A phases; see the reviews
of Frenkel [3] and of Allen et al. [21]. In addition, if the
attractive caps of two molecules overlap there is an en-
ergy € released. The model is thus a particular case of
an anisotropic generalization of the isotropic hard-sphere
plus square-well potential used extensively in the study
of simple fluids [22].

Theoretical study, even of simple cylindrical models, is
complex for phases with positional ordering, such as the
smectic-A (see Ref. [23] and references therein). So, in
order to simplify the theory we consider only a fluid in
which the molecules are aligned along the z axis. Thus
the fluid has perfect nematic ordering at all densities.
This clearly precludes the study of the isotropic-nematic
and isotropic-smectic transitions; the fluid is, contrary
to reality, nematic down to arbitrarily low densities. In
addition, when the molecules are perfectly aligned the
properties of the fluid becomes independent of the ratio
L/D, where L defines the length scale of the z axis and
D the length scale of the z and y axes. There is then
only one model parameter: the ratio L./L, where L.
is the total length of the molecule including the square-
well cap. The energy ¢ defines our temperature scale;
the reduced temperature T* = kpT'/e, where T is the
temperature and kp is Boltzmann’s constant.

If the model molecules are very long, the number den-
sity at the isotropic-nematic transition is O(L~2D~1!)
while the nematic-smectic and smectic-solid transition
densities are O(L~1D~2). The nematic-smectic transi-
tion is thus deep into the nematic phase and the rods
will be highly aligned. In this case the nematic-smectic
transition seems to be quite close to that of the aligned
system [24]. It may therefore be hoped that the phase di-
agram of an aligned system corresponds quite closely to
that of the corresponding freely rotating system (exclud-

Le

FIG. 2. Cross section of the model molecule. The model is
a hard cylinder of length L and diameter D with an attractive
cap at one end; the cap is cylindrical with the same diameter
D and the total length of the molecule including this cap is
L.. The center of the molecule is taken as the center of the
hard cylinder.
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ing the latter’s isotropic phase) provided L is large [25].
There is an exception to this as aligned systems may
form columnar phases [12], but columnar phases have
not been observed for freely rotating rods. It is likely
that only very small deviations from perfect alignment
are sufficient in long rods to destroy columnar ordering.
The situation is very different for disks, although per-
fectly aligned disks behave in exactly the same way as
rods; even very small fluctuations in the orientation of
disks will destroy smectic ordering (but presumably not
the columnar ordering).

We start from the free-energy functional truncated at
the second virial coefficient level [22]

pa= [ o) {1nlp(A?] - 1} d(1)
-3 [ Pe@Fa2d0de) 1)

for A the Helmholtz free energy. The number density
p(1) is given as a function of the coordinates (1), which
represents both the position vector r and the orientation
s. The spinlike variable s takes values +1: +1 if the
molecule is parallel to the z axis and —1 if it is antiparallel
to the z axis. Although the molecules are aligned with
the z axis, they may be either parallel or antiparallel to
it; this is different from the case of simple cylinders that
are unchanged by rotation through 7. The integrations in
Eq. (1) are therefore integrations over position and sums
over the spin variable. 8 = 1/kgT and A is the de Broglie
wavelength of a molecule. The Mayer f function of the
intermolecular potential is f(12), where (12) represents
the relative coordinates of molecules 1 and 2.

The potential function is a sum of two parts: the re-
pulsive part modeled as a hard-core cylinder and the at-
tractive cap. Using this, the Mayer f function may be
factorized into two parts

f(12) = fuc(12) + enc(12) fa(12), (2)

where fuc(12) and f,(12) are the f functions of the
hard core and the attractive cap, respectively, and egc =
fuc + 1. The f function of a hard-core potential is —1 if
the two hard cores overlap and zero otherwise, and for a
square-well attraction the f function is exp(Be) — 1 = F
when the wells overlap and again zero otherwise. So,

fuc(12) = —Op L(r12), (3)

fa(12) = Fé,,+18,,-10p 1. (r12)H(Z' — 2)
+F8, 185 +10p,1.(r12)H(z — 2'), (4)
where O, 3 is an overlap function,
Oap(r12) = H(a® — z3, — y1,) H(b — |212]). (3)

H is the step function, é is the Kronecker delta, and
ri2 = r’ — r. The undashed and dashed coordinates refer
to molecules 1 and 2, respectively. The Mayer f function
Eq. (2) now becomes
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f(12) = —Op,1(r12)
Y F[8, 4160 1 H (2 — 2)
+05, 10, 11 H(z — Z’)]
x [Op,L.(r12) — Op,L(r12)]- (6)

Substituting this in the free-energy functional Eq. (1)
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pa= [ o) oA - 1} (1)
+ / p(1)p(2)Op, 1(r12)d(1)d(2)

_F / p(1)p(2)84 4180 1 H(2' — 2)
% [Op,, (r12) — Op,r(r12)] d(1)d(2). (7)

The first of the two second virial coefficient integrals represents the contribution of excluded volume interactions.
In the spirit of van der Waals we scale this term by an approximation to the free volume [26-28]

pa= [ o(1) {nlp()4%) = 1}d) + (1 =) [ oo H(E - 2)0p,1(r)d(1)d(2)

_F / p(1)p(2)80 1160, 1H(2' — 2) [Op, 1. (r12) — O£ (r12)] d(1)d(2) (8)

for n = pvg the volume fraction of the fluid, p is the av-
erage number density, and vo = wLD?/4 is the volume
of a molecule. The second virial coefficient has now been
reduced to three integrals, each of the same form; the ex-
cluded volume integral has been converted to an integral
over the space z' > z by use of the fact that the overlap
function is symmetric about 2’ — z = 0.

In the nematic phase the number density is a constant
and the integrals are trivial; the free energy is then

B —m(pa®) — 14 4n1 =)t = Fo (1) @

In order to estimate the free energy of the smectic-A
phase we calculate the free energy in the presence of a
square-wave density modulation, following Hosino et al.
[20]. The form of the wave is illustrated in Fig. 3. In the
Sm-A phase only the total density varies with position;
the fraction of molecules with spin up is equal to the

|

f

fraction with spin down at every point, as in the nematic
phase. So, the number density is now a function of z,
but not a function of z, y, or s:

9
p(z)z{p(1+pd),m)\_<_z<m/\+p/\ (10)

p(l—0), mA+pr<z<(m+1)A

where o is the excess fraction of molecules in the
“humps”; as such it varies from zero to one. It is the
order parameter for the Sm-A phase. When ¢ is nonzero
the fluid splits into layers of high and low density. The
high-density layers we call type-A layers and the low-
density layers type B. The wavelength is A (= 2n/k),
m is an integer, and gA and pA are the widths of the
two types of layers; see Fig. 3. The integration over all
coordinates except z in the free energy Eq. (8) is still
trivial:

A A
ﬂvA — () /D p(2) {In[p(2)A%] — 1} dz + 4vo(1 — n)*(AL) " L / p(2)p(2VH(2' — 2)H(L — 2 + 2)dzd?’

A
—Fuo(AL)™ fo / p(2)p(2VH (' — 2) [H(Le — 2’ + 2) — H(L — 2 + 2)] d=dz'. (11)

The second integration in both of the second virial coefficient terms is unrestricted. Integration of the ideal gas term
is simple, but the second virial coefficient is less straightforward; each of the three integrals there is the same so we

consider only one of them

A
(L)t /0 /p(z)p(z')H(z' —2)H(L — 2’ + 2)dzdz’. (12)

The number density p(z) may be replaced in Eq. (12) by an excess number density p’(z), defined by

p(2) = pl2) -

p(1— o). (13)

The second term may be identified as the number density in the type-B layers, thus the excess densities are zero in

layers of type B. Substituting Eq. (13) in Eq. (12)
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A
(AL)~! / / [¢(2)7'(2') + 20(1 — 0)'(2) + p*(1 — 0)?] H(2' — 2)H(L — 2 + 2)dzd’ (14)
4]

DA
= (po/p)2(AL)~" A /A H(z — 2)H(L — #' + 2)dzd?’
pA
+2p%0(1 — o) /p(AL)~? /0 /H(z' —2)H(L — 2’ + 2z)dzd2’

A
+[p(1 = a))>(AL)! /0 /H(z' —2)H(L — 2’ + 2)dzdz'. (15)

The subscript A on an integration sign indicates that the integration is restricted to within layers of type A. It is only
the first integral where both molecules are restricted to within the layers of type A, which is nontrivial. We represent
this integral by 2144 (k,p): it is a function only of x = A/L, the ratio of the wavelength to L, and p. The factor of
2 is for consistency with the integrals for the bilayer phase. This integral and the others found for the bilayer phase

are evaluated in the Appendix. We then have, after a little algebra,

P’ [1 + a? <2IA;('3192 - )] : (16)

Inserting this in the free energy

A _ 2144 (k,
% =InpA® — 1+ (p+qo) In(1 + go/p) + q(1 — o) In(1 — o) + 4n(1 —n)~* [1 + 0?2 (% - 1)]
L, o [ Le 2I%4(x.,p) 2I44(k,p) L.

where K. = A/L.. At a given temperature and density
the free energy of the Sm-A phase depends on the three
parameters o, K, and p. At equilibrium the free energy
will be at a minimum with respect to variations in these
parameters; this criterion defines the equilibrium values
of the parameters.

In both the nematic phase and in the smectic-A phase

PA

p(2) po
12
qA
f{z) o
<——A—>
f(z) '

FIG. 3. Square-wave density modulations in the Sm-A and
Sm-A; phases. The top wave p(z) is the density modulation
in the Sm-A and Sm-A, phases. The middle wave fi(z) is
the modulation in the fraction of molecules pointing up (i.e.,
with s = +1) present in the Sm-A, phase and the bottom
wave f_(z) is the equivalent of f(z) for downward pointing
molecules. The symbols are defined in the text.

[

the fraction of molecules pointing up (say) is uniform:
it is equal to % At a second-order Sm-A-Sm-A, phase
transition this fraction of molecules pointing in one di-
rection acquires a modulation of twice the period of the
modulation in the total density. The coupling of this spin
wave to the density wave then causes the period of the
density wave to double. The density is a function of z
and s

p(1) = p(z,8) = p(2)[0a,+1f+(2) + 62,1 f-(2)], (18)

where f(z) and f_(z) are the fractions of molecules with
the attractive cap above (s = +1) and below (s = —1)
the center of the molecule, respectively. This factoriza-
tion of the density into the total density times a factor
that depends on s is perfectly general. Both p(z) and

‘f+(2) have the same period, but if we assume that bi-

layer formation has a small effect on the layer spacing of
alternate pairs of layers then it is reasonable to neglect
this effect and retain the Sm-A form of p(2) given by Eq.
(10). It is important to note that using a p(z) with a
period half that of fi(z) is an approximation and not
a feature of the symmetry of the Sm-A4, phase (except
along a second-order transition from a Sm-A phase). In
addition, by removing part of the coupling between the
density and spin modulations the tendency of the Sm-A—
Sm-A, transition towards becoming first order may be
underestimated.

The variation in f (z) and f_(z) with position is again
approximated by a square wave, but here, due to sym-
metry, the two types of layers, called a¢ and b, are of the
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same width; see Fig. 3. This symmetry follows from the
fact that the two functions fi(z) and f_(z), which sum
to unity, are equivalent:

_[3(+0,), 2mA<z < (2m+1)A
F+le) = { %(1—%), (2m+1)A <z <2(m+1)A,

(19)
[ i1(1l-0s), 2mA<z<(2m+1)A
f-(e) = { % (140,), @Gm+1A<z<2(m+1)A,
(20)

where o, is the order parameter for the Sm-A, phase.
When o, is nonzero the smectic layers are alternately
rich in one orientation and then rich in the other. The
decrease in entropy caused by this loss in orientational
freedom is compensated by the energy released by more

BA
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of the attractive caps overlapping. Clearly, if a layer of
molecules pointing up is directly below one of molecules
pointing down, the opportunities for overlap of these caps
are greatly increased; the caps on two molecules can only
overlap when the molecules are antiparallel, due to the
hard cores. Smectic ordering is driven by the reduction
in volume excluded to a molecule when alternating layers
of high and low density are formed; this leads to a den-
sity modulation with a wavelength a little longer than
the length of the molecule. The formation of bilayers
is driven by the energy released when the molecules of
two adjacent layers point towards each other and many
of their attractive square wells overlap. The characteris-
tic modulation is then of a wavelength around twice the
range of the attraction, with the modulations in the two
orientations in antiphase.

The free energy Eq. (8) may be simply integrated over
all coordinates except z:

22
G =220 [ a1 (2) {lnloe) ()47 - 1}

2)
+4vo(1 — )~ 1 (2AL) ! /(; /p(z)p(z')H(z' —2)H(L — 2’ + 2)dzdz’

2
—4Fvo(2AL) A / p(2) f+(2)p(#) f—(ZVH (2 — 2) [H(Le — 2’ + 2) — H(L — 2 + 2)] d=dz". (21)

Here, the two equivalent ideal gas terms for the two orientations have been combined, and in the excluded volume
term the irrelevant dependence on f; and f_ has been summed over. The two equivalent terms in the attractive part
of the second virial coefficient have also been added together.

In an analogous way to our definition of the excess number densities in Eq. (13), we define excess fractions of the

two orientations as

1
Fi(@) = f+(2) - 51 = 00), (22)
with an equivalent definition for f’ (z). Substituting these excess fractions into the first of the two attractive integrals
of Eq. (21)
22 1
(2)\L)_1/ /p(z)p(z') [fg_(z)f'_ (") + (1 =04 fi(z)+ Z(l - 0'3)2] H(z' — 2)H(L. — 2’ + z)dzd?/, (23)
0

the second integral is exactly the same except for the substitution of L for L.. Continuing, we write

A
o2(2AL)"" /0 /b p(2)p(ZVH (2 — 2)H(Le — 7 + 2)dzd2’

A
+0y(1 = 0y)(2AL) /0 / p(2)p(ZVH (' — 2)H (Lo — 7' + 2)dzd2’

22
+%(1 —0,)%(2AL) 1 /0 /p(z)p(z')H(z' —2)H (L. — 2' + 2)dzdz’. (24)

A subscript b on an integration indicates that the integration is restricted to layers of type b. In Eq. (24) the terms
linear in o, cancel as they should; symmetry forbids such terms. Then subtracting the second term from the first

A
—0'3(2)\L)_1/0 /p(z)p(z')H(z' — 2)H(L. — 2' + 2)dzd2’

22
+%(1 +o2)(2AL)? /0 /p(z)p(z')H(z' — 2)H(L, — 2’ + 2z)dzdz'. (25)
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The second of these two integrals is just Eq. (12) and has already been dealt with. The first integral depends on both
the density and the spin waves and it is the only part of the free energy that depends on their relative phase. The
excess density Eq. (13) is substituted in the first integral of Eq. (25) to give

A
2aL)—t /0 / [P (2)0'(2') +2p(1 — 0)p'(2) + P*(1 — 0)?] H(2' — 2)H(L. — ' + z)dzdz’ (26)

ngz PA
-(2ar) / / H(z — 2)H (L. — 2 + 2)d2dz’
1] aA

2 _ PA
+2”—‘f%—"-)(2,\L)-1 / / H( — 2)H(Le — 2 + 2)dzd’
(1] a

A
+0%(1 - o)?(2AL)7 ! /) /H(z' —2)H(L. — 2’ + z)dzdz’. (27)

A subscript aA means that the integration is restricted to regions (i.e., values of z) that are both in layers of type a
and type A. The integrals are represented as functions of k. and p:

p

o? *o(l—o aAa aa
L2 roeA e, p) + 22 ZL 2T pede e, ) 4 21— 0)2T ey ). (28)

The I’s are the integrals and the superscripts indicate the regions to which the integration is restricted. These integrals
are all in the Appendix, together with a sketch of the derivation of the ideal gas term. The free energy is then
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It is easy to verify that this expression for the free energy
of the Sm-A, phase reduces to that for the Sm-A phase
Eq. (17) when o, = 0 and to that for the N phase Eq.
(9) when both o, = 0 and o = 0. In the limit of temper-
ature tending to infinity only the hard-core interactions
contribute (thus o, will be zero) and the free energy will
reduce to that of Hosino et al. [20]. At a given temper-
ature and density the equilibrium free energy is found
by varying the four parameters o, o5, A, and p until the
free energy Eq. (29) is a minimum. The pressure is
the volume (or density) derivative of the free energy at
constant temperature [29] and may thus be obtained by
numerically differentiating the equilibrium free energy.
The chemical potential of a pure component is just the
Gibbs free energy per particle and may be obtained via
the familiar thermodynamic relation p = (4 + PV)/N.

+4I°%(k,p) + 1] } (29)

III. PHASE DIAGRAM

Symmetry allows the N-Sm-A4 and Sm-A-Sm-A, tran-
sitions to be second order [7]; note the absence of linear
terms in o in Eq. (17) and in o, in Eq. (29) and also
that there is no cubic term in o,, or in o if p = 1/2.
Finding a second-order transition is a matter of finding
the point where the order parameter is first nonzero at
equilibrium. Finding this density at a given temperature
simply requires a bisectionlike search of the density where
o or o, first becomes nonzero. For a first-order transition
the two densities at coexistence are required; these are
defined by the equalities of chemical potential and pres-
sure. These two equalities form two equations in the two
unknowns, i.e., the two densities, and the resulting two
simultaneous equations are solved as in earlier work [30].
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The pressure-temperature projection of the phase di-
agram for L./L = 1.2 is shown in Fig. 4. First, we dis-
cuss the unsurprising features. The N-Sm-A transition
is always second order, but the Sm-A-Sm-A, transition
becomes first order as it approaches the N-Sm-A tran-
sition. As the pressure of the Sm-A-Sm-A, transition
decreases the Sm-A ordering at the transition decreases,
and once the Sm-A ordering is sufficiently far from sat-
uration, the coupling between o, and o drives the Sm-
A-Sm-A, transition to become first order [31,8]. This
occurs at a tricritical point in the Sm-A-Sm-A, transi-
tion [7]. Surprisingly, there is a Sm-A-Sm-A transition.
As may be seen from the temperature-density projec-
tion, Fig. 5, there is a narrow, highly pointed coexistence
region. This region is bounded by a critical point at
high temperature and this coexistence region meets the
Sm-A-Sm-A, coexistence region at a triple point at low
temperature. The phase diagram for L./L = 1.05, i.e., a
much shorter ranged square well, has also been calculated
and there the Sm-A-Sm-A4 coexistence region is moved
towards the tricritical point, which is now at a density
above close packing.

In Fig. 6 the behavior of the parameters of the free en-
ergy is displayed for a constant temperature slice, which
includes the Sm-A-Sm-A transition. All four have a dis-
continuity within the coexistence region; the pressure
isotherm (not shown) is also discontinuous. This is char-
acteristic of a change in the global minimum of the free
energy as a function of the four parameters [12]; at the
discontinuity what was a local minimum becomes the
global minimum. These two minima correspond to two
competing wavelengths [8] for the Sm-A density wave.
The discontinuity is very close to k = 1.2, where the
wavelength equals the total length of the model. It is
perhaps necessary to be cautious about this prediction
as both the potential and the density wave are step func-

20

FIG. 4. Pressure-temperature projection of the phase di-
agram within our approximate theory for our model with
L./L = 1.2. The reduced pressure p* = Pvo/e, where P is
the pressure, and the reduced temperature T* = kT /e. The
continuous and dashed curves indicate first- and second-order
transitions, respectively.
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FIG. 5. Temperature-density projection of phase diagram
for the system of Fig. 4., i.e., L./L = 1.2. The continu-
ous curve encloses the two-phase coexistence region while the
dashed curve marks the first appearance of a nonzero o at
equilibrium and the dotted curve the first appearance of a
NONZero os.

tions; the free energy may therefore be unrealistically
sensitive to A for A = L..

The Sm-A-Sm-A critical point is closely analogous to
critical points found in experiment [16,17] and with Lan-
dau theory [18] between two phases, which may be clas-
sified as Sm-A4. In experiment, although some systems
possessed this critical point [16], in others the critical
point of the transition was masked by an island in the
phase diagram where the nematic phase is the most sta-
ble phase [17]. The Landau theory used [18] did not pre-
dict this nematic island, but when a fluctuation corrected
mean-field theory was used a nematic region appeared for
certain parameter values [18]. There the melting of the
smectic phase into the nematic was mediated by the un-

o \

0.8 Oy
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0.4+

0.2
~—Pr 00000
0.0 T T T T y

0.2 0.3 0.4 0.5 0.6 0.7 0.8

n

FIG. 6. Four parameters o, 05, &, and p are plotted as a
function of density for a reduced temperature T* = 1.3, again
for the system L./L = 1.2.
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binding of dislocations. The absence of a nematic island
in our phase diagram, Fig. 4, may be due to the model
or to the approximations of the theory.

In order to look more closely at the effect of the attrac-
tive forces on the fluid in the smectic phases, the density
dependence of the parameters at 7* = 2 and T™* = oo,
i.e., the hard-core limit, are compared in Fig. 7. Some-
what surprisingly, the effect of the attractive forces on the
Sm-A ordering is slight; this is consistent with the very
weak dependence of the N—Sm-A transition density on
temperature seen in Fig. 5. The parameters k and p are
more sensitive to temperature; in particular they both
show an undulation for T* = 2 because this is only just
above the critical temperature of the Sm-A4-Sm-A tran-
sition T* = 1.92. At the lower temperature of 7* = 1.3
(see Fig. 6) x and p are more influenced by the attractive
interactions. It may be seen that over a wide range of
density the wavelength « is close to 1.1 while p is a little
above 0.1; it is easy to verify that for a wave with these
values of k and p the energy is near the minimum possi-
ble. An unrelated but interesting observation is that very
near the tricritical point of the Sm- A-Sm-A, transition,
o, is continuous, i.e., there is no jump, unlike that seen
in Landau theory right up to the tricritical point.

The relative phase angle ¢ between the density and
spin waves has been fixed at zero or m, depending on
whether f, or f_ is used to define it. In the earlier work
on a Sm-A, phase [14] the phase angle was important,
and nonzero. So now, after the fact, some justification
is provided for the neglect of ¢. The first integral of
Eq. (25) is the only integral that depends on ¢; it is
non-negative and for our model it appears in the free
energy as L. times its value for a cylinder of length L,
minus L times its value for a cylinder of length L; this
difference is also non-negative. The difference appears
in the free energy multiplied by +o02 and so for nonzero
0,, the free energy is minimized by the minimum value
of this integral. Thus the equilibrium value of ¢ is that

1.4

0.0 T T T T T
0.3 0.4 0.5 0.6 n 0.7 0.8 0.9

FIG. 7. Four parameters o, 0,, Kk, and p are plotted as
a function of density for a reduced temperature T = 2;
L./L = 1.2. These are the solid curves. The high temper-
ature limit is also plotted for comparison: o, k, and p are
shown as dashed curves.
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which minimizes this difference. Now, ¢f 0 = 1 then the
difference is zero for ¢ = 0 (in fact for a range of ¢), as
seen in Eq. (29). The free energy for ¢ = 0 is therefore
the equilibrium free energy. In the Sm-A, phase o is
always close to one; see Figs. 6 and 7.

IV. CONCLUSION

A model molecule has been proposed and, using an ap-
proximate theory for an aligned fluid of these molecules,
a rich phase diagram has been calculated. Aligning the
molecules to the z axis is a reasonable approximation
only for very long rods at packing fraction n of order
unity. Thus it may be hoped that the phase diagram of
Figs. 3 and 4 is a reasonable approximation to that of
the freely rotating model if L/D > 1. However, the solid
phase is missing from our calculated phase diagram. The
aligned system will presumably undergo a smectic-solid
transition and the density of this transition is unlikely to
vary much with temperature (as for the N-Sm-A transi-
tion) being driven by excluded volume interactions. The
smectic-solid transition for our model in the infinite tem-
perature limit is weakly first order; the smectic density
at coexistence is 7 = 0.57 according to simulation [32].
This suggests that the tricritical point and the second or-
der Sm-A-Sm-A, transition is masked by the solid phase.
Note that due to the scaling of the repulsive terms of the
second virial coefficient our theory predicts a N-Sm-A
transition at n = 0.421, in quite good agreement with
the simulation result of 7 = 0.44 for the purely repulsive
system.

In Fig. 4 the pressure at the nematic-smectic transi-
tion, whether it be to the Sm-A or Sm-A, phase, de-
creases monotonically as the temperature decreases. In
contrast, earlier work on the nematic-smectic transition
in a system of dimerizing cylinders [12], i.e., where the
attractive interaction is saturable, showed that the tran-
sition pressure went through a maximum. In Ref. [12]
different approximations were made; a bifurcation anal-
ysis was performed with respect to a sinusoidal pertur-
bation. The Sm-A, phase was not considered and the
treatment of dimers as a single molecule meant that what
are three-body interactions between both molecules of a
dimer and another monomer were included. Here, the
simple treatment at the level of the second virial coef-
ficient ignores interactions between a pair of molecules
interacting via their square wells and another molecule.
In [12] it is the monomer-dimer interactions that destabi-
lize the smectic phase causing the maximum in the pres-
sure of the nematic-smectic transition. We should there-
fore be cautious about the slowly varying pressure at the
nematic-smectic transition found here. However, at low
temperatures a fluid will adopt configurations with a low
energy. For the nonsaturable interactions treated here,
this means (antiparallel) layering due to the collective na-
ture of the attractive interactions, whereas for saturable
interactions the low-energy state of virtually ccmplete
bonding into dimers does not imply layering. A definitive
description of the phase behavior of rods with saturable
and with nonsaturable attractive interactions would re-
quire treating both with a much more accurate theory
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or computer simulation. Also, it would be necessary to
account for the different ranges of the interactions: the
dimerization interaction has been assumed to have zero
range while the phase diagram presented here is for a
square well that is 0.2 times as long as the hard core. In-
creasing the range of the interaction allows the molecules
to interact without disrupting the layering.
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APPENDIX

In this appendix the integrals required are evaluated as
a function of  (or k.) and p. It is found that the integrals
are required only in the range 1/2 < k < 2, the minimum
of the free energy always lies at a wavelength within this
range. Thus the integrals are calculated assuming k is

J

IAA — Ia.Aa.A + IaAbA’

IaAaA — l 2
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within this range. All the integrals are of the same form,
i.e., that of integration of a step function over z and 2/;
thus we show explicitly only the calculation of one:

PA
I°*4%(k,p) = (2AL)~* / dz / dz'
0 a
xH(z' — 2)H(L — Z' + z).

In the remainder of this appendix the explicit dependence
on k and p is dropped. For k > 1 and ¢k <1,
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The derivation of the ideal gas term in the Sm-A, phase is now sketched. The term in question is

2\
(23) [) dzp(2) 1 (2) In p(2) f1 (2)-

The logarithm may be expanded as a sum of logarithms of p and f giving two integrals

A 22
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The f,(z) has disappeared from the first integral because it is constant over the period of the density modulation

1

and averages to 5 over 2). The p(z) has disappeared from the second because it averages out to p over any period of
length ). Substituting Egs. (10) and (19) into the equation then leads to the ideal gas part of Eq. (29).
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